Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.

نویسندگان

  • Kosala Ranathunge
  • Lukasz Kotula
  • Ernst Steudle
  • Renee Lafitte
چکیده

The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative gating of water channels (aquaporins) in corn roots.

An oxidative gating of water channels (aquaporins: AQPs) was observed in roots of corn seedlings as already found for the green alga Chara corallina. In the presence of 35 mM hydrogen peroxide (H2O2)--a precursor of hydroxyl radicals (*OH)--half times of water flow (as measured with the aid of pressure probes) increased at the level of both entire roots and individual cortical cells by factors ...

متن کامل

The role of aquaporins in root water uptake.

The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant ...

متن کامل

How does water get through roots?

uptake of water. On the contrary, at low rates of transpiration such as during the night or during stress conOn the basis of recent results with young primary ditions (drought, high salinity, nutrient deprivation), maize roots, a model is proposed for the movement of the apoplastic path will be less used and the hydraulic water across roots. It is shown how the complex, ‘comresistance will be h...

متن کامل

Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings.

Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showin...

متن کامل

Modified Kedem-Katchalsky equations for osmosis through nano-pore

AQPs (aquaporins), the rapid water channels of cells, play a key role in maintaining osmotic equilibrium of cells. In this paper, we reported the dynamic mechanism of AQP osmosis at the molecular level. A theoretical model based on molecular dynamics was carried out and verified by the published experimental data. The reflection coefficients (σ) of neutral molecules are mainly decided by their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 396  شماره 

صفحات  -

تاریخ انتشار 2004